# Advanced Surveying Quiz Questions – Set 08

Are you guys looking for Civil Engineering MCQ Questions with Answers PDF Free Download as per Civil Engineering new exam pattern? You came to the right page. This may assist you to understand and check your knowledge about the Subjects. Students also can take a free test of the Multiple Choice Questions of Civil Engineering. Each question has four options followed by the right answer. These Civil Engineering MCQ Questions are selected supported by the newest exam pattern.

## Q1. The orthogonal projection of the perspective centre on a tilted photograph, is called

(B) Isocenter
(C) Principal point
(D) Plumb point

## Q2. In observations of equal precision, the most probable values of the observed quantities are those that render the sum of the squares of the residual errors a minimum, is the fundamental principle of

(A) Gauss’ Mid Latitude formula
(B) D’Alembert’s method
(C) Legendre’s method
(D) Least square method

(A) δ – θ
(B) θ – δ
(C) θ + δ
(D) ½ (θ – δ)

## Q4. When a star is between the pole and the horizon, the relationship between latitude (λ), zenith distance (z) and declination δ, is

(A) θ = z + δ
(B) θ = δ – z
(C) θ = 180° – (z + δ)
(D) θ = (z + δ) – 180°

Answer: (C) θ = 180° – (z + δ)

## Q5. The station which is selected close to the main triangulation station, to avoid intervening obstruction, is not known as

(A) Satellite station
(B) Eccentric station
(C) False station
(D) Pivot station

## Q6. With standard meridian as 82° 30′ E the standard time at longitude 90° E is 8 h 30 m. The local mean time at the place will be

(A) 7 h 00 m
(B) 7 h 30 m
(C) 8 h 00 m
(D) 9 h 00 m

Answer: (D) 9 h 00 m

## Q7. Pick up the correct statement from the following:

(A) Refraction correction is zero when the celestial body is in the zenith
(B) Refraction correction is 33′ when the celestial body is on the horizon
(C) Refraction correction of celestial bodies depends upon their altitudes
(D) All the above

## Q8. A plate parallel is the line on the plane of the negative

(A) Parallel to the principal line
(B) Perpendicular to the principal line
(C) Along the bisector of the angle between the principal line and a perpendicular line through principal plane
(D) None of these

Answer: (B) Perpendicular to the principal line

(A) f/H
(B) f/(H + h)
(C) f/(H – h)
(D) (H – h)/f

## Q10. Pick up the incorrect statement from the following. In a spherical triangle

(A) Every angle is less than two right angles
(B) Sum of the three angles is equal to two right angles
(C) Sum of the three angles less than six right angles and greater than two right angles
(D) Sum of any two sides is greater than the third

Answer: (B) Sum of the three angles is equal to two right angles

## Q11. The shortest distance between two places measured along the surface of the earth, is

(A) Length of the equator between their longitudes
(B) Length of the parallel between their longitudes
(C) Length of the arc of the great circle passing through them
(D) None of these

Answer: (C) Length of the arc of the great circle passing through them

## Q12. The latitude of a place was obtained by subtracting the declination of a star from its zenith distance, the observed star was between

(A) Horizon and equator
(B) Zenith and pole
(C) Equator and zenith
(D) Pole and horizon

(A) Lengths
(B) Angles
(C) Heights
(D) All of these

## Q14. The angular distance of a heavenly body from the equator, measured along its meridian, is called

(A) Declination
(B) Altitude
(C) Zenith distance
(D) Co-latitude

## Q15. Systematic errors

(A) Always follow some definite mathematical law
(B) Can be removed by applying corrections to the observed values
(C) Are also known as cumulative errors
(D) All the above